Demanding Design Boosts Shuttle Engine

http://www.nasa-spacestation-info.blogspot.com/
A space shuttle main engine burns at 6,000 degrees F, but the outside of the nozzle remains cool to the touch. Prior to launch, sometimes it even frosts over.

The nozzle technology that allows a finger-width of ridged metal to contain and steer flames that would boil iron is just one of the scores of innovations designers came up with for the engines three decades ago.
http://www.nasa-spacestation-info.blogspot.com/
Such advances were critical if NASA was going to realize its plans for a reusable space shuttle that, unlike the previous rockets, would not use its engines once and then drop them in the ocean.

Some of the others:

- A system that lets the engines be incrementally throttled up and down depending on the needs of the mission

- A hydrogen turbopump that spins 567 times a second with each 2” tall turbine blade generating 700 horsepower.

- A computer that runs 50 health checks on the engine every second using data from 200 sensors

- A system of pipes, or ducts, that withstand pressures as high as 7,000 pounds per square inch

- A main combustion chamber strong enough to contain the explosion of 970 pounds of oxygen and 162 pounds of hydrogen fuel every second, continuously for 8 1/2 minutes

- The only heavy-lift booster engine that continuously performs all the way from launch pad to orbit

- Engineering and materials that allow the engine to be reused multiple times

- A compact, efficient design that produces 8 times the thrust of a modern high performance jet engine per each pound of weight.

Added together, the innovations became a rocket engine that is more than 99.9 percent efficient, which means that almost all of its hydrogen and oxygen is used to create thrust. For comparison, an automobile engine is about a third as efficient, since most of its energy is created in the form of heat that does not turn the wheels.

"Everything in that engine is a whole science field," said Carlos Estrada, NASA's Main Propulsion Branch chief at Kennedy Space Center. "You look at the materials, you look at the components, you look at the way they designed that engine, how it's all designed for the different stages with the pump and pressures. I mean, every time you look at a component you have all these people with expertise in it."

Three main engines are used to launch a shuttle into orbit, along with help from a pair of solid-fueled boosters that separate two minutes after launch.http://www.nasa-spacestation-info.blogspot.com/

The advances did not come easily for designers who, working in the 1970s before computer-assisted design became commonplace, ran many of their calculations on slide rules and used judgments based on the experience they gained building massive engines for the Saturn V moon rocket.

Getting the start sequence correct alone took about a year of testing, fixing and more testing, said Dan Hausman, Pratt & Whitney Rocketdyne's site director at Kennedy. "We kept burning up the turbine blades, getting temperature spikes. Our analog models weren't that good with the start sequence. We had to figure out how to get it started because everything had an idiosyncrasy."

The idiosyncrasies he talks about are no small matter considering a single main engine creates more than four times the horsepower of the Hoover Dam.

When most people think of an engine, they usually picture a part of the engine called a bell or nozzle. It's the part that everyone sees at launch shooting flames and supersonic exhaust. Although a lot is happening inside the bell, it's one of the least active parts of the machine during launch. The real action is taking place in front of the engine bell in a maze of hidden machinery called the powerhead.

"The powerhead is the meat of the engine," said Stephen Prescott, a Pratt & Whitney Rocketdyne engineer specializing in the engine's turbopumps. "The nozzle is what's actually allowing us to gather the thrust, but the powerhead is what actually gives us the thrust."

The powerhead is home to four turbopumps, a robust computer controller and a network of ducts, wiring and valves designed to release 500,000 pounds of thrust without exploding. For as much power as it releases, the powerhead is not imposingly large. Standing above the nozzle in a workstand, the powerhead reaches about six feet from the floor. The high-pressure hydrogen turbopump, the strongest of the four, would fit on a desk.

"You run into some people who think it's easy," Hausman said. "Anybody who thinks it's easy doesn't understand it. Once you understand it, that's a marvel of engineering. It's a marvel that people can build it, and operate it and work it at the high reliability that we've done."

The first space shuttle main engine ignition took place well before Columbia lifted off on April 12, 1981, to inaugurate the space shuttle era. It happened in the mid-1970s at a concrete and steel test stand at NASA's Stennis Space Center in Mississippi where engineers and designers could put an engine through its paces without worrying about sacrificing a spacecraft and its payload if something went wrong.

And things went wrong, especially in the beginning. The liquid oxygen turbopump blew up. The hydrogen turbopump blades broke and exploded the whole thing. There was the occasional combustion instability, which is a polite way of saying the controlled exhaust thrust went out of control and, you guessed it, blew the engine up.

In fact, the first engine test Hausman saw in person at Stennis ended with a puff of black smoke and half the engine sitting at the bottom of the stand.

"There wasn't much left, it was all kind of a molten mass of dripping metal because when liquid oxygen eats metal, there's no evidence left because metal vaporizes," Hausman explained. "Twenty milliseconds, 40 milliseconds, 60 milliseconds, the engine's gone. Very fast."
http://www.nasa-spacestation-info.blogspot.com/
It is that speed that keeps the shuttle engine's mechanics on their toes as they carefully evaluate every engine after a flight.

"We have a line from John Plowden, one our most senior engineers, that’s embedded in the DNA of everyone here: Never turn your back on a rocket engine," Prescott said. "Knowing what this engine can do to itself in a split second is what keeps us focused on knowing you can't just brush off something that you think is fine."

While spectacular malfunctions on the engines were a mark of the early part of the engine development, fixing them effectively and retesting over and over would become a hallmark of the main engine program.

"The key was test, test, test," Hausman said. "In the development program, the best learning we could ever do was have an engine blow up at Stennis, because we could find an issue and go fix it."

"Any part that flew here at Kennedy had a counterpart that operated twice as long at Stennis," Hausman said.

Stennis recorded 2,000 main engine test firings between 1975 and 1992. More firings, including flight certification tests for every engine used on a shuttle, took place until July 29, 2009, bringing the total to over 2,300 engine firings at that one facility.

Hausman credits the careful development work with setting up the engine to successfully cope with problems during a shuttle launch, though there were very few of those throughout the shuttle's 130-plus missions.

A shuttle mission has never failed because of the main engines, though there were a couple close calls. The first came in 1985, when one of Challenger's three main engines shut down during ascent, prompting the crew to fly to a lower orbit. The Spacelab mission still was successful and engineers traced the problem to one of the sensors on the engine that shut down.

A series of failures occurred during the launch of Columbia in 1999, when a pin broke loose inside the main combustion chamber and popped a couple tiny holes in three of the 1,080 hydrogen tubes in the nozzle. There also was a pair of short circuits in Columbia’s electrical system during ascent which resulted in a loss of electrical power on the primary channel to the engines. The redundant safety features designed into the engine allowed the controller to seamlessly transfer control to an alternate channel and continue on with the mission.

Eileen Collins commanded the flight and Columbia was able to reach orbit and deploy the groundbreaking Chandra X-ray observatory just as was planned.

Prescott was watching that launch and listening to the transmissions back and forth between controllers and the shuttle crew.

"We knew something had gone on, but we weren't quite sure just what had happened," Prescott said. "Eileen, that was the most perfect example of what kind of training those astronauts go through, because she was just so calm, cool and collected."

Engineers dove deeply into the engine after Columbia's return to find out what went wrong.

"That was pretty scary," Estrada said. "That was a big deal."

Another engine safety feature was demonstrated during Columbia’s third mission in 1982 when one of the orbiter’s three auxiliary power units shut down late into the launch, resulting in a loss of hydraulic power to one main engine. That engine’s backup electrical controhttp://www.nasa-spacestation-info.blogspot.com/l system maintained control and performance until reaching orbit which was then followed by a fail-safe, pneumatically-actuated main engine cut-off.

Hausman said the redundant systems built into the engines paid off during those situations.

A great deal of effort and research went into developing the shuttle's main engines, but maintaining them and keeping them healthy during the shuttle's 30-year career has been equally advanced and careful.

"I came in around 1996, and to me it was amazing to see how much people needed to know to be able to manage such a piece of equipment," Estrada said.

The engines' overseers spend hours peering with one eye shut into a small borescope, basically a long, black, flexible fiber optic hose with a lens at one end and an eyepiece at the other. Doctors use them frequently to examine patients. The engineers are looking for anything amiss, whether it be a weld in one of the turbopump housings, a tiny hole in a pipe, unusual wear or erosion or something they've never seen before.

"Keeping the discipline of what you do and how you do it is critical," Estrada said.

It is repetitive and painstaking work that takes a full shift to complete on each major component of the engine. And that does not count all the other extensive inspections performed before an engine launches again.

"Pretty much everything on this engine is criticality one," Prescott said. "We can’t even so much as lose a fastener and not create a problem because we're pretty close to the limits on everything on this engine."

When the technicians find something amiss, no effort is too much to track it down and fix it.

"It's a three-dimensional puzzle that sometimes, like a Rubik's Cube, you don't even know you’re close to getting it together until all the sudden, the thing's solved in front of you," Prescott said. "We've been known to chase our tails trying to get just perfect alignment and before you know it, there it is, everything can go together."

Throughout the shuttle's operation, designers kept improving the machinery. The sensors were steadily improved to make them more robust, the powerhead was redesigned to reduce pressures inside the transfer tubes and smooth the fuel flow, and the main combustion chamber throat area was enlarged to de-rate the engine and add extra operating margin. The modified heat exchanger eliminated welds and was strengthened.
http://www.nasa-spacestation-info.blogspot.com/
Perhaps one of the biggest changes came when additional robustness was designed into the high pressure turbo-machinery. Overall, these design changes resulted in an additional 700 pounds of weight, but increased safety by a factor of 3 over earlier configurations. A final engine upgrade was introduced in 2007 when the advanced health management system became active, providing an additional 23 percent safety improvement during ascent.

Why put so much effort into the engines? Hausman credits rocket pioneer and Saturn V developer Werner von Braun with detailing the argument:

"The gist of his discussion was, if you don't build the engine right, anything above it that you put your time and money in is a waste of your time because if you don't build this right, you're not getting into space," Hausman said.

Thin Air - Cassini Finds Ethereal Atmosphere at Rhea

http://www.nasa-spacestation-info.blogspot.com/
NASA's Cassini spacecraft has detected a very tenuous atmosphere known as an exosphere, infused with oxygen and carbon dioxide around Saturn's icy moon Rhea. This is the first time a spacecraft has directly captured molecules of an oxygen atmosphere – albeit a very thin one -- at a world other than Earth.

The oxygen appears to arise when Saturn's magnetic field rotates over Rhea. Energetic particles trapped in the planet's magnetic field pepper the moon’s water-ice surface. They cause chemical reactions that decompose the surface and release oxygen. The source of the carbon dioxide is less certain.
http://www.nasa-spacestation-info.blogspot.com/
Oxygen at Rhea's surface is estimated to be about 5 trillion times less dense than what we have at Earth. But the new results show that surface decomposition could contribute abundant molecules of oxygen, leading to surface densities roughly 100 times greater than the exospheres of either Earth's moon or Mercury. The formation of oxygen and carbon dioxide could possibly drive complex chemistry on the surfaces of many icy bodies in the universe.

"The new results suggest that active, complex chemistry involving oxygen may be quite common throughout the solar system and even our universe," said lead author Ben Teolis, a Cassini team scientist based at Southwest Research Institute in San Antonio. "Such chemistry could be a prerequisite for life. All evidence from Cassini indicates that Rhea is too cold and devoid of the liquid water necessary for life as we know it."

Releasing oxygen through surface irradiation could help generate conditions favorable for life at an icy body other than Rhea that has liquid water under the surface, Teolis said. If the oxygen and carbon dioxide from the surface could somehow get transported down to a sub-surface ocean, that would provide a much more hospitable environment for more complex compounds and life to form. Scientists are keen to investigate whether life on icy moons with an ocean is possible, though they have not yet detected it.

The tenuous atmosphere with oxygen and carbon dioxide makes Rhea, Saturn's second largest moon, unique in the Saturnian system. Titan has a thick nitrogen-methane atmosphere, but very little carbon dioxide and oxygen.

"Rhea is turning out to be much more interesting than we had imagined," said Linda Spilker, Cassini project scientist at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "The Cassini finding highlights the rich diversity of Saturn’s moons and gives us clues on how they formed and evolved."

Scientists had suspected Rhea could have a thin atmosphere with oxygen and carbon dioxide, based on remote observations of Jupiter's icy moons by NASA's Galileo spacecraft and Hubble Space Telescope. Other Cassini observations detected oxygen escaping from icy Saturn ring particles after ultraviolet bombardment. But Cassini was able to detect oxygen and carbon dioxide in the exosphere directly because of how close it flew to Rhea – 101 kilometers, or 63 miles – and its special suite of instruments.

In the new study, scientists combined data from Cassini's ion and neutral mass spectrometer and the Cassini plasma spectrometer during flybys on Nov. 26, 2005, Aug. 30, 2007, and March 2, 2010. The ion and neutral mass spectrometer "tasted" peak densities of oxygen of around 50 billion molecules per cubic meter (1 billion molecules per cubic foot). It detected peak densities of carbon dioxide of around 20 billion molecules per cubic meter (about 600 million molecules per cubic foot).

The plasma spectrometer saw clear signatures of flowing streams of positive and negative ions, with masses that corresponded to ions of oxygen and carbon dioxide.

"How exactly the carbon dioxide is released is still a puzzle," said co-author Geraint Jones, a Cassini team scientist based at University College London in the U.K. "But with Cassini's diverse suite of instruments observing Rhea from afar, as well as sniffing the gas surrounding it, we hope to solve the puzzle."

The carbon dioxide may be the result of “dry ice” trapped from the primordial solar nebula, as is the case with comets, or it may be due to similar irradiation processes operating on the organic molecules trapped in the water ice of Rhea. The carbon dioxide could also come from carbon-rich materials deposited by tiny meteors that bombarded Rhea's surface.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency, and the Italian Space Agency. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter was designed, developed and assembled at JPL. The ion and neutral mass spectrometer team and the Cassini plasma spectrometer team are based at Southwest Research Institute, San Antonio.

Astronomers Probe 'Sandbar' Between Islands of Galaxies

http://www.nasa-spacestation-info.blogspot.com/
Astronomers have caught sight of an unusual galaxy that has illuminated new details about a celestial "sandbar" connecting two massive islands of galaxies. The research was conducted in part with NASA's Spitzer Space Telescope.
http://www.nasa-spacestation-info.blogspot.com/
These "sandbars," or filaments, are known to span vast distances between galaxy clusters and form a lattice-like structure known as the cosmic web. Though immense, these filaments are difficult to see and study in detail. Two years ago, Spitzer's infrared eyes revealed that one such intergalactic filament containing star-forming galaxies ran between the galaxy clusters called Abell 1763 and Abell 1770.

Now these observations have been bolstered by the discovery, inside this same filament, of a galaxy that has a rare boomerang shape and unusual light emissions. Hot gas is sweeping the wandering galaxy into this shape as it passes through the filament, presenting a new way to gauge the filament's particle density. Researchers hope that other such galaxies with oddly curved profiles could serve as signposts for the faint threads, which in turn signify regions ripe for forming stars.

"These filaments are integral to the evolution of galaxy clusters -- among the biggest gravitationally bound objects in the universe -- as well as the creation of new generations of stars," said Louise Edwards, a postdoctoral researcher at the California Institute of Technology in Pasadena, and lead author of a study detailing the findings in the Dec. 1 issue of the Astrophysical Journal Letters. Her collaborators are Dario Fadda, also at Caltech, and Dave Frayer from the National Science Foundation's National Radio Astronomy Observatory, based in Charlottesville, Virginia.

Blowing in the cosmic breeze

Astronomers spotted the bent galaxy about 11 million light-years away from the center of the galaxy cluster Abell 1763 during follow-up observations with the WIYN Observatory near Tucson, Ariz., and radio-wave observations by the Very Large Array near Socorro, N.M. The WIYN Observatory is named after the consortium that owns and operates it, which includes the University of Wisconsin, Indiana University, Yale University, and the National Optical Astronomy Observatories.


The galaxy has an unusual ratio of radio to infrared light, as measured by the Very Large Array and Spitzer, making it stand out like a beacon. This is due in part to the galaxy having twin jets of material spewing in opposite directions from a supermassive black hole at its center. These jets have puffed out into giant lobes of material that emit a tremendous amount of radio waves.

Edwards and her colleagues noticed that these lobes appear to be bent back and away from the galaxy's trajectory through the filament. This bow shape, the astronomers reasoned, is due to particles in the filament pushing on the gas and dust in the lobes.

By measuring the angle of the arced lobes, Edwards' team calculated the pressure exerted by the filaments' particles and then determined the density of the medium. The method is somewhat like looking at streamers on a kite soaring overhead to judge the wind strength and the thickness of the air.

According to the data, the density inside this filament is indeed about 100 times the average density of the universe. This value agrees with that obtained in a previous X-ray study of filaments and also nicely matches predictions of supercomputer simulations.

Interconnected superclusters

Galaxies tend to bunch together as great islands in the void of space, called galaxy clusters. These galaxy groupings themselves often keep company with other clusters in "superclusters" that loom as gargantuan, gravitationally associated walls of galaxies. These structures evolved from denser patches of material as the universe rapidly expanded after the Big Bang, some 13.7 billion years ago.

The clumps and threads of this primordial matter eventually cooled, and some of it has condensed into the galaxies we see today. The leftover gas is strewn in filaments between galaxy clusters. Much of it is still quite hot -- about one million degrees Celsius (1.8 million degrees Fahrenheit) -- and blazes in high-energy X-rays that permeate galaxy clusters. Filaments are therefore best detected in X-ray light, and one direct density reading of the strands has previously been obtained in this band of frequencies.

But the X-ray-emitting gas in filaments is much more diffuse and weak than in clusters, just as submerged sandbars are extremely hard to spot at sea compared to islands poking above the water. Therefore, obtaining quality observations of filaments is time-consuming with current space observatories.

The technique by Edwards and her colleagues, which uses radio frequencies that can reach a host of ground-based telescopes, points to an easier way to probe the interiors of galaxy-cluster filaments. Instead of laboring to find subtle X-rays clues, astronomers could trust these arced "lighthouse" galaxies to indicate just where cosmic filaments lie.

Knowing how much material these filaments contain and how they interact with galaxy clusters will be very important for understanding the overall evolution of the universe, Edwards said.

The Spitzer observations were made before it ran out of its liquid coolant in May 2009 and began its warm mission.

NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at Caltech, also in Pasadena. Caltech manages JPL for NASA. For more information about Spitzer,

Stripes are Back in Season on Jupiter

http://www.nasa-spacestation-info.blogspot.com/
New NASA images support findings that one of Jupiter's stripes that "disappeared" last spring is now showing signs of a comeback. These new observations will help scientists better understand the interaction between Jupiter's winds and cloud chemistry.
http://www.nasa-spacestation-info.blogspot.com/
Earlier this year, amateur astronomers noticed that a longstanding dark-brown stripe, known as the South Equatorial Belt, just south of Jupiter's equator, had turned white. In early November, amateur astronomer Christopher Go of Cebu City, Philippines, saw an unusually bright spot in the white area that was once the dark stripe. This phenomenon piqued the interest of scientists at NASA's Jet Propulsion Laboratory, Pasadena, Calif., and elsewhere.

After follow-up observations in Hawaii with NASA's Infrared Telescope Facility, the W.M. Keck Observatory and the Gemini Observatory telescope, scientists now believe the vanished dark stripe is making a comeback.

First-glimpse images of the re-appearing stripe are online at: http://www.nasa.gov/topics/solarsystem/features/jupiter20101124-i.html .

"The reason Jupiter seemed to 'lose' this band – camouflaging itself among the surrounding white bands – is that the usual downwelling winds that are dry and keep the region clear of clouds died down," said Glenn Orton, a research scientist at JPL. "One of the things we were looking for in the infrared was evidence that the darker material emerging to the west of the bright spot was actually the start of clearing in the cloud deck, and that is precisely what we saw."

This white cloud deck is made up of white ammonia ice. When the white clouds float at a higher altitude, they obscure the missing brown material, which floats at a lower altitude. Every few decades or so, the South Equatorial Belt turns completely white for perhaps one to three years, an event that has puzzled scientists for decades. This extreme change in appearance has only been seen with the South Equatorial Belt, making it unique to Jupiter and the entire solar system.

The white band wasn't the only change on the big, gaseous planet. At the same time, Jupiter's Great Red Spot became a darker red color. Orton said the color of the spot – a giant storm on Jupiter that is three times the size of Earth and a century or more old – will likely brighten a bit again as the South Equatorial Belt makes its comeback.http://www.nasa-spacestation-info.blogspot.com/

The South Equatorial Belt underwent a slight brightening, known as a "fade," just as NASA's New Horizons spacecraft was flying by on its way to Pluto in 2007. Then there was a rapid "revival" of its usual dark color three to four months later. The last full fade and revival was a double-header event, starting with a fade in 1989, revival in 1990, then another fade and revival in 1993. Similar fades and revivals have been captured visually and photographically back to the early 20th century, and they are likely to be a long-term phenomenon in Jupiter's atmosphere.

Scientists are particularly interested in observing this latest event because it's the first time they've been able to use modern instruments to determine the details of the chemical and dynamical changes of this phenomenon. Observing this event carefully may help to refine the scientific questions to be posed by NASA's Juno spacecraft, due to arrive at Jupiter in 2016, and a larger, proposed mission to orbit Jupiter and explore its satellite Europa after 2020.

The event also signifies another close collaboration between professional and amateur astronomers. The amateurs, located worldwide, are often well equipped with instrumentation and are able to track the rapid developments of planets in the solar system. These amateurs are collaborating with professionals to pursue further studies of the changes that are of great value to scientists and researchers everywhere.
http://www.nasa-spacestation-info.blogspot.com/
"I was fortunate to catch the outburst," said Christopher Go, referring to the first signs that the band was coming back. "I had a meeting that evening and it went late. I caught the outburst just in time as it was rising. Had I imaged earlier, I would not have caught it," he said. Go, who also conducts in the physics department at the University of San Carlos, Cebu City, Philippines, witnessed the disappearance of the stripe earlier this year, and in 2007 he was the first to catch the stripe's return. "I was able to catch it early this time around because I knew exactly what to look for."

NASA's Exoplanet Science Institute at the California Institute of Technology in Pasadena manages time allocation on the Keck telescope for NASA. Caltech manages JPL for NASA.

Crew Prepares for Departure

http://www.nasa-spacestation-info.blogspot.com/
Expedition 25 Commander Doug Wheelock ceremonially handed over command of the International Space Station to Flight Engineer and Expedition 26 Commander Scott Kelly Wednesday.
http://www.nasa-spacestation-info.blogspot.com/
Wheelock and Flight Engineers Shannon Walker and Fyodor Yurchikhin are scheduled to land in Kazakhstan Thursday at 11:46 p.m. EST (Friday 10:46 a.m. Kazakhstan time). When they undock in the Soyuz TMA-19 spacecraft at 8:23 p.m. Thursday Expedition 26 will officially begin. Remaining onboard the station will be Kelly and Flight Engineers Alexander Kaleri and Oleg Skripochka.

Yurchikhin spent time packing the Soyuz spacecraft for the trio’s departure.

Skripochka and Kaleri worked with the Russian SONOCARD experiment. SONOCARD collects physiological data during sleep to study the feasibility of obtaining real-time health data that could serve as a basis for evaluating and predicting the human body’s ability to adapt during long-duration spaceflight.

Walker collected samples for the Japanese experiment Mycological Evaluation of Crew Exposure to ISS Ambient Air, or MYCO. The experiment determines which fungi act as allergens aboard the station by evaluating the risk of microorganisms via inhalation and adhesion to the skin of crew members.

Walker also aided Kelly as he collected blood samples for use in the station’s Human Research Facilities, or HRFs, and stored them in the Minus Eighty-Degree Laboratory Freezer for ISS. The HRFs provide on-orbit laboratories that enable scientists conducting human life science research to evaluate the physiological, behavioral and chemical changes induced by spaceflight.

Wheelock participated in the Integrated Immune experiment, which assesses the clinical risks resulting from the adverse effects of spaceflight on the human immune system. These assessments are used to develop a flight-compatible immune monitoring strategy.

SRB Systems Testing, Program Meeting Today

http://www.nasa-spacestation-info.blogspot.com/
At NASA's Kennedy Space Center in Florida, teams will disconnect ordnance on space shuttle Discovery's solid rocket boosters, or SRBs, and perform a test of the system's pyrotechnic initiator controller. Technicians will reconnect the ordnance for the SRBs and the ground umbilical carrier plate, or GUCP, today. Crews also will perform open and closed loop range safety checks.

The Space Shuttle Program will review the analysis and repairs that are required to safely launch shuttle Discovery on its STS-133 mission during a special Program Requirements Control Board session today. Pending a successful review of the flight rationale at that meeting, a Launch Status Briefing would be held with senior NASA management on Monday, Nov. 29 at Kennedy.

Kennedy's “Call-to-Stations” to begin the launch countdown will be no earlier than Nov. 30, supporting a first launch attempt no earlier than Dec. 3 at 2:52 a.m. EST.

Departure Preps for Station Crew Members

http://www.nasa-spacestation-info.blogspot.com/
After some time off over the weekend, the Expedition 25 crew aboard the International Space Station began another work week Monday with a focus on the departure of three of its crew members.
http://www.nasa-spacestation-info.blogspot.com/
Commander Doug Wheelock and Flight Engineer Shannon Walker continued ongoing training and preparations for their departure with Flight Engineer Fyodor Yurchikhin, who will serve as Soyuz commander during their descent. The trio is set to depart the station and return to Earth Nov. 25 at 11:46 p.m. EST (Nov. 26 at 10:46 a.m. Kazakhstan time) aboard the Soyuz TMA-19 spacecraft, landing in Kazakhstan a few hours later.

The Soyuz undocking will mark the beginning of Expedition 26 led by Commander Scott Kelly, currently an Expedition 25 flight engineer. Flight Engineers Alexander Kaleri and Oleg Skripochka will continue their stay aboard the station with Kelly.

Skripochka continued the process of unloading cargo from the ISS Progress 40 cargo craft that docked to the Pirs docking compartment in October. Once emptied, Progress 40 will be filled with trash and station discards and deorbited to burn in the Earth’s atmosphere like its predecessors.

Kelly conducted cooling loop maintenance on the U.S. spacesuits in preparation for spacewalks scheduled to be performed during the STS-133 mission next month.

Kaleri and Skripochka conducted a session with the Russian behavioral assessment TYPOLOGY, which measures a crew member's psychophysical state and ability to withstand stress, to perform and to communicate. An electroencephalogram measures and records the electrical activity of the brain.

Walker answered questions about life on the station and her daily activities during an in-flight interview with Dr. Neil deGrasse Tyson of the “StarTalk Radio” program.

NASA's Newest Microsatellite FASTSAT Launches Successfully

http://www.nasa-spacestation-info.blogspot.com/
On Saturday, Nov. 20, FASTSAT made contact with ground stations at Svalbard, Norway and Kodiak, Alaska, and received commands from and communicated with mission controllers at the small satellite command center located at the Huntsville Operations and Science Control Center at NASA's Marshall Space Flight Center in Huntsville, Ala. The satellite continues to function nominally as the commissioning phase of the mission continues.

NASA's Fast, Affordable, Science and Technology Satellite, or FASTSAT, launhttp://www.nasa-spacestation-info.blogspot.com/ched on Nov. 19 aboard a Minotaur IV rocket from Kodiak Launch Complex on Kodiak Island, Alaska. FASTSAT is a unique platform that can carry multiple small payloads to low-Earth orbit creating opportunities for researchers to conduct low-cost scientific and technology research on an autonomous satellite in space.

FASTSAT is NASA’s first microsatellite designed to create a capability that increases opportunities for secondary, scientific and technology payloads, or rideshares, to be flown at lower cost than previously possible. The overall objective of the FASTSAT mission is to demonstrate the capability to build, design and test a microsatellite platform to enable governmental, academic and industry researchers to conduct low-cost scientific and technology experiments on an autonomous satellite in space.

FASTSAT establishes a platform and environment where science and technology research experiment payloads of low- and mid-level complexity can be flown responsively and affordably in low-Earth orbit

WISE Image Reveals Strange Specimen in Starry Sea

http://nasa-sate-info.blogspot.com/A new image from NASA's Wide-field Infrared Survey Explorer shows what looks like a glowing jellyfish floating at the bottom of a dark, speckled sea. In reality, this critter belongs to the cosmos -- it's a dying star surrounded by fluorescing gas and two very unusual rings.

"I am reminded of the jellyfish exhibition at the Monterey Bay Aquarium -- beautiful things floating in water, except this one is in space," said Edward (Ned) Wright, the principal investigator of the WISE mission at UCLA, and a co-author of a paper on the findings, reported in the Astronomical Journal.

The object, known as NGC 1514 and sometimes the "Crystal Ball" nebula, belongs to a class of objects called planetary nebulae, which form when dying stars toss off their outer layers of material. Ultraviolet light from a central star, or in this case a pair of stars, causes the gas to fluoresce with colorful light. The result is often beautiful -- these objects have been referred to as the butterflies of space.
http://nasa-sate-info.blogspot.com/
NGC 1514 was discovered in 1790 by Sir William Herschel, who noted that its "shining fluid" meant that it could not be a faint cluster of stars, as originally suspected. Herschel had previously coined the term planetary nebulae to describe similar objects with circular, planet-like shapes.

Planetary nebulae with asymmetrical wings of nebulosity are common. But nothing like the newfound rings around NGC 1514 had been seen before. Astronomers say the rings are made of dust ejected by the dying pair of stars at the center of NGC 1514. This burst of dust collided with the walls of a cavity that was already cleared out by stellar winds, forming the rings.

"I just happened to look up one of my favorite objects in our WISE catalogue and was shocked to see these odd rings," said Michael Ressler, a member of the WISE science team at NASA's Jet Propulsion Laboratory in Pasadena, Calif., and lead author of the Astronomical Journal paper. Ressler first became acquainted with the object years ago while playing around with his amateur telescope on a desert camping trip. "It's funny how things come around full circle like this."

WISE was able to spot the rings for the first time because their dust is being heated and glows with the infrared light that WISE can detect. In visible-light images, the rings are hidden from view, overwhelmed by the brightly fluorescing clouds of gas.

"This object has been studied for more than 200 years, but WISE shows us it still has surprises," said Ressler.

Infrared light has been color-coded in the new WISE picture, such that blue represents light with a wavelength of 3.4 microns; turquoise is 4.6-micron light; green is 12-micron light; and red is 22-micron light. The dust rings stand out in orange. The greenish glow at the center is an inner shell of material, blown out more recently than an outer shell that is too faint to be seen in WISE's infrared view. The white dot in the middle is the central pair of stars, which are too close together for WISE to see separately.

Ressler says NGC 1514's structure, though it looks unique, is probably similar in overall geometry to other hour-glass nebulae, such as the Engraved Hourglass Nebula (http://hubblesite.org/newscenter/archive/releases/1996/07). The structure looks different in WISE's view because the rings are detectable only by their heat; they do not fluoresce at visible wavelengths, as do the rings in the other objects.

Serendipitous findings like this one are common in survey missions like WISE, which comb through the whole sky. WISE has been surveying the sky in infrared light since January 2010, cataloguing hundreds of millions of asteroids, stars and galaxies. In late September, after covering the sky about one-and-a-half times, it ran out of the frozen coolant needed to chill its longest-wavelength detectors. The mission, now called NEOWISE, is still scanning the skies with two of its infrared detectors, focusing primarily on comets and asteroids, including near-Earth objects, which are bodies whose orbits pass relatively close to Earth's orbit around the sun.

The WISE science team says that more oddballs like NGC 1514 are sure to turn up in the plethora of WISE data -- the first batch of which will be released to the astronomical community in spring 2011.

Other study authors are Martin Cohen of the Monterey Institute for Research in Astronomy, Marina, Calif.; Stefanie Wachter and Don Hoard of NASA's Spitzer Science Center at the California Institute of Technology in Pasadena; and Amy Mainzer of JPL.

JPL manages and operates the Wide-field Infrared Survey Explorer for NASA's Science Mission Directorate, Washington. The mission was competitively selected under NASA's Explorers Program managed by the Goddard Space Flight Center, Greenbelt, Md. The science instrument was built by the Space Dynamics Laboratory, Logan, Utah, and the spacecraft was built by Ball Aerospace & Technologies Corp., Boulder, Colo. Science operations and data processing take place at the Infrared Processing and Analysis Center at Caltech.

NASA Chat: Antarctic Fliers, Live!

http://www.nasa-spacestation-info.blogspot.com/
Since Oct. 26, researchers have been making flights over Antarctica on NASA's DC-8 flying science laboratory to map ice surfaces and the features hidden below. Data collected arhttp://www.nasa-spacestation-info.blogspot.com/e critical for understanding the dynamics of ice in West Antarctica and its impact on sea-level rise.

The flights are part of NASA's Operation IceBridge mission, wrapping up its second year of field campaigns at the end of November. The aircraft, crew and instrument teams are based in Punta Arenas, Chile, where they make flights -- weather permitting -- to the remote continent. Once there, teams operate any of the seven instruments to characterize the snow, ice, and bedrock.

On Wednesday, Nov. 17, On Thursday, Nov. 18, IceBridge scientists will be on hand from the field to answer your questions about the mission. Joining the chat is easy. Simply visit this page on Wednesday, Nov. 17 Thursday, Nov. 18, from 1 to 2 p.m. EST. The chat window will open at the bottom of this page starting at 12:30 p.m. EST. You can log in and be ready to ask questions at 1 p.m. The time and date is subject to change due to changes in the flight schedule to meet requirements for good weather over science targets.

More About IceBridge Scientists and their workhorse, the DC-8
http://www.nasa-spacestation-info.blogspot.com/
Project scientist Michael Studinger, of NASA's Goddard Space Flight Center in Greenbelt, Md., makes sure missions run smoothly. The mission also includes scientists, crew and technicians from Goddard; Wallops Flight Facility, in Wallops Island, Va.; NASA's Dryden Flight Research Center in Edwards, Calif.; NASA's Ames Research Center in Moffett Field, Calif.; The Earth Institute at Columbia University in Palisades, N.Y.; the University of Kansas; and the University of Washington.

NASA's DC-8 is a modified jetliner that supports instruments used to collect data for field research. Some instruments on the DC-8 complement measurements made by satellites, providing a close up look at specific regions, while other instruments are intended only for aircraft. The DC-8 has made Arctic and Antarctic flights in 2009 and 2010.

NASA's Chandra Finds Youngest Nearby Black Hole

http://www.nasa-spacestation-info.blogspot.com/
Astronomers using NASA's Chandra X-ray Observatory have found evidence of the youngest black hole known to exist in our cosmic neighborhood. The 30-year-old black hole provides a unique opportunity to watch this type of object develop from infancy.

The black hole could help scientists better understand how massive stars explode, which ones leave behind black holes or neutron stars, and the number of black holes in our galaxy and others.
http://www.nasa-spacestation-info.blogspot.com/
The 30-year-old object is a remnant of SN 1979C, a supernova in the galaxy M100 approximately 50 million light years from Earth. Data from Chandra, NASA's Swift satellite, the European Space Agency's XMM-Newton and the German ROSAT observatory revealed a bright source of X-rays that has remained steady during observation from 1995 to 2007. This suggests the object is a black hole being fed either by material falling into it from the supernova or a binary companion.

"If our interpretation is correct, this is the nearest example where the birth of a black hole has been observed," said Daniel Patnaude of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. who led the study.

The scientists think SN 1979C, first discovered by an amateur astronomer in 1979, formed when a star about 20 times more massive than the sun collapsed. Many new black holes in the distant universe previously have been detected in the form of gamma-ray bursts (GRBs). However, SN 1979C is different because it is much closer and belongs to a class of supernovas unlikely to be associated with a GRB. Theory predicts most black holes in the universe should form when the core of a star collapses and a GRB is not produced.

"This may be the first time the common way of making a black hole has been observed," said co-author Abraham Loeb, also of the Harvard-Smithsonian Center for Astrophysics. "However, it is very difficult to detect this type of black hole birth because decades of X-ray observations are needed to make the case."

The idea of a black hole with an observed age of only about 30 years is consistent with recent theoretical work. In 2005, a theory was presented that the bright optical light of this supernova was powered by a jet from a black hole that was unable to penetrate the hydrogen envelope of the star to form a GRB. The results seen in the observations of SN 1979C fit this theory very well.

Although the evidence points to a newly formed black hole in SN 1979C, another intriguing possibility is that a young, rapidly spinning neutron star with a powerful wind of high energy particles could be responsible for the X-ray emission. This would make the object in SN 1979C the youngest and brightest example of such a "pulsar wind nebula" and the youngest known neutron star. The Crab pulsar, the best-known example of a bright pulsar wind nebula, is about 950 years old.

"It's very rewarding to see how the commitment of some of the most advanced telescopes in space, like Chandra, can help complete the story," said Jon Morse, head of the Astrophysics Division at NASA's Science Mission Directorate.

The results will appear in the New Astronomy journal in a paper by Patnaude, Loeb, and Christine Jones of the Harvard-Smithsonian Center for Astrophysics. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge.

Crew Performs Spacewalk

http://www.nasa-spacestation-info.blogspot.com/
Spacewalking Expedition 25 Flight Engineers Fyodor Yurchikhin and Oleg Skripochka are floating briskly through the tasks planned for them outside the International Space Station. They began Russian Spacewalk #26 about 30 minutes later than scheduled but are about 30 minutes ahead of the timeline after installing a multipurpose workstation on the right side of the Zhttp://www.nasa-spacestation-info.blogspot.com/vezda service module for use by future spacewalkers. Their next task is to remove a robotics experiment from the left side of Zvezda.

Yurchikhin and Skripochka began their planned 5-hour, 55-minute spacewalk at 9:54 a.m. EST.

The primary assembly and maintenance objectives of the spacewalk are to install a multipurpose workstation on the starboard side of the Zvezda service module’s large-diameter section, clean thermal insulation around the vents for the Elektron oxygen-generation system and relocate a television camera from one end of the Rassvet docking compartment to the other.

Research objectives include cleaning and removing a robotics experiment known as Kontur, short for Development of a System of Supervisory Control Over the Internet of the Robotic Manipulator in the Russian Segment of ISS, from the port side of Zvezda into the Pirs airlock; installing a new materials experiment on a handrail on the Rassvet module, and collecting samples from the exterior of Zvezda and Pirs.

Detailed Dark Matter Map Yields Clues to Galaxy Cluster Growth

http://www.nasa-spacestation-info.blogspot.com/
Astronomers using NASA's Hubble Space Telescope took advantage of a giant cosmic magnifying glass to create one of the sharpest and most detailed maps of dark matter in the universe. Dark matter is an invisible and unknown substance that makes up the bulk of the universe's mass.
http://www.nasa-spacestation-info.blogspot.com/
The new dark matter observations may yield new insights into the role of dark energy in the universe's early formative years. The result suggests that galaxy clusters may have formed earlier than expected, before the push of dark energy inhibited their growth. A mysterious property of space, dark energy fights against the gravitational pull of dark matter. Dark energy pushes galaxies apart from one another by stretching the space between them, thereby suppressing the formation of giant structures called galaxy clusters. One way astronomers can probe this primeval tug-of-war is through mapping the distribution of dark matter in clusters.

A team led by Dan Coe at NASA's Jet Propulsion Laboratory in Pasadena, Calif., used Hubble's Advanced Camera for Surveys to chart the invisible matter in the massive galaxy cluster Abell 1689, located 2.2 billion light-years away. The cluster's gravity, the majority of which comes from dark matter, acts like a cosmic magnifying glass, bending and amplifying the light from distant galaxies behind it. This effect, called gravitational lensing, produces multiple, warped, and greatly magnified images of those galaxies, like the view in a funhouse mirror. By studying the distorted images, astronomers estimated the amount of dark matter within the cluster. If the cluster's gravity only came from the visible galaxies, the lensing distortions would be much weaker.

Based on their higher-resolution mass map, Coe and his collaborators confirm previous results showing that the core of Abell 1689 is much denser in dark matter than expected for a cluster of its size, based on computer simulations of structure growth. Abell 1689 joins a handful of other well-studied clusters found to have similarly dense cores. The finding is surprising, because the push of dark energy early in the universe's history would have stunted the growth of all galaxy clusters.

"Galaxy clusters, therefore, would had to have started forming billions of years earlier in order to build up to the numbers we see today," Coe explains. "At earlier times, the universe was smaller and more densely packed with dark matter. Abell 1689 appears to have been well fed at birth by the dense matter surrounding it in the early universe. The cluster has carried this bulk with it through its adult life to appear as we observe it today."

New GUCP to be Installed Today, Foam to be Trimmed

http://www.nasa-spacestation-info.blogspot.com/
At NASA's Kennedy Space Center, teams will begin installing space shuttle Discovery's new ground umbilical carrier plate, or GUCP, this morning. Engineers will meet today to analyze data. Teams plan to have the GUCP work completed over the weekend.

Technicians will trim the foam insulation around the area where two cracks were found on Discovery's external fuel tank metal exterior to inspect the surrounding areas. The cracks were found on the stringer, which is the aluminum strip that forms the section between the liquid oxygen tank and the liquid hydrogen tank, after removing foam that cracked during initial loading operations for the STS-133 launch attempt on Nov. 5.

NASA Test Fires New Rocket Engine for Commercial Space Vehicle

http://nasa-spacestation-info.blogspot.com/
NASA's John C. Stennis Space Center in Mississippi conducted a successful test firing Wednesday of the liquid-fuel AJ26 engine that will power the first stage of Orbital Sciences Corp.'s Taurus II space launch vehicle. Orbital and its engine supplier, Aerojet, test-fired the engine on Stennis' E-1 test stand. The test directly supports NASA's partnerships to enable http://nasa-spacestation-info.blogspot.com/commercial cargo flights to the International Space Station.

The initial test, the first in a series of three firings, lasted 10 seconds and served as a short-duration readiness firing to verify AJ26 engine start and shutdown sequences, E-1 test stand operations, and ground-test engine controls.

The test was conducted by a joint operations team comprised of Orbital, Aerojet and Stennis engineers, with Stennis employees serving as test conductors. The joint operations team and other NASA engineers will conduct an in-depth data review of all subsystems in preparation for a 50-second hot-fire acceptance test scheduled several weeks from now. A third hot-fire test at Stennis also is planned to verify tuning of engine control valves.



"Congratulations to Orbital and Aerojet for successfully completing another major milestone," said Doug Cooke, associate administrator for the Exploration Systems Mission Directorate at NASA Headquarters in Washington. "This brings us one step closer to realizing NASA's goals for accessing low Earth orbit via commercial spacecraft."

The AJ26 engine is designed to power the Taurus II space vehicle on flights to low Earth orbit. The NASA-Orbital partnership was formed under the agency's Commercial Orbital Transportation Services joint research and development project. The company is under contract with NASA to provide eight cargo missions to the space station through 2015.

"With this first test, Stennis not only demonstrates its versatility and status as the nation's premiere rocket engine test facility, it also opens an exciting new chapter in the nation's space program," said Patrick Scheuermann, Stennis' center director. "We're proud to be partnering with Orbital to enable the wave of the future -- commercial flights to space and eventual resupply of cargo to the International Space Station."

In addition to the Orbital partnership, Stennis also conducts testing on Pratt & Whitney Rocketdyne's RS-68 rocket engine. The AJ26 is the first new engine in years to be tested at Stennis. Operators spent more than two years modifying the E-1 test stand in preparation. Work included construction of a 27-foot-deep flame deflector trench, major structural modifications and new fluid and gas delivery systems.

NASA's Fermi Telescope Finds Giant Structure in our Galaxy

http://nasa-spacestation-info.blogspot.com/
NASA's Fermi Gamma-ray Space Telescope has unveiled a previously unseen structure centered in the Milky Way. The feature spans 50,000 light-years and may be the remnant of an eruption from a supersized black hole at the center of our galaxy.
http://nasa-spacestation-info.blogspot.com/
"What we see are two gamma-ray-emitting bubbles that extend 25,000 light-years north and south of the galactic center," said Doug Finkbeiner, an astronomer at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., who first recognized the feature. "We don't fully understand their nature or origin."

The structure spans more than half of the visible sky, from the constellation Virgo to the constellation Grus, and it may be millions of years old. A paper about the findings has been accepted for publication in The Astrophysical Journal.

Finkbeiner and his team discovered the bubbles by processing publicly availabhttp://nasa-spacestation-info.blogspot.com/le data from Fermi's Large Area Telescope (LAT). The LAT is the most sensitive and highest-resolution gamma-ray detector ever launched. Gamma rays are the highest-energy form of light.

Other astronomers studying gamma rays hadn't detected the bubbles partly because of a fog of gamma rays that appears throughout the sky. The fog happens when particles moving near the speed of light interact with light and interstellar gas in the Milky Way. The LAT team constantly refines models to uncover new gamma-ray sources obscured by this so-called diffuse emission. By using various estimates of the fog, Finkbeiner and his colleagues were able to isolate it from the LAT data and unveil the giant bubbles.

Scientists now are conducting more analyses to better understand how the never-before-seen structure was formed. The bubble emissions are much more energetic than the gamma-ray fog seen elsewhere in the Milky Way. The bubbles also appear to have well-defined edges. The structure's shape and emissions suggest it was formed as a result of a large and relatively rapid energy release - the source of which remains a mystery.

One possibility includes a particle jet from the supermassive black hole at the galactic center. In many other galaxies, astronomers see fast particle jets powered by matter falling toward a central black hole. While there is no evidence the Milky Way's black hole has such a jet today, it may have in the past. The bubbles also may have formed as a result of gas outflows from a burst of star formation, perhaps the one that produced many massive star clusters in the Milky Way's center several million years ago.

"In other galaxies, we see that starbursts can drive enormous gas outflows," said David Spergel, a scientist at Princeton University in New Jersey. "Whatever the energy source behind these huge bubbles may be, it is connected to many deep questions in astrophysics."

Hints of the bubbles appear in earlier spacecraft data. X-ray observations frhttp://nasa-spacestation-info.blogspot.com/om the German-led Roentgen Satellite suggested subtle evidence for bubble edges close to the galactic center, or in the same orientation as the Milky Way. NASA's Wilkinson Microwave Anisotropy Probe detected an excess of radio signals at the position of the gamma-ray bubbles.

The Fermi LAT team also revealed Tuesday the instrument's best picture of the gamma-ray sky, the result of two years of data collection.

"Fermi scans the entire sky every three hours, and as the mission continues and our exposure deepens, we see the extreme universe in progressively greater detail," said Julie McEnery, Fermi project scientist at NASA's Goddard Space Flight Center in Greenbelt, Md.
http://nasa-spacestation-info.blogspot.com/

NASA's Fermi is an astrophysics and particle physics partnership, developed in collaboration with the U.S. Department of Energy, with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.

"Since its launch in June 2008, Fermi repeatedly has proven itself to be a frontier facility, giving us new insights ranging from the nature of space-time to the first observations of a gamma-ray nova," said Jon Morse, Astrophysics Division director at NASA Headquarters in Washington. “These latest discoveries continue to demonstrate Fermi's outstanding performance.”