Young Stars Flicker Amidst Clouds of Gas and Dust


PASADENA, Calif. Astronomers have spotted young stars in the Orion nebula changing right before their eyes, thanks to the European Space Agency's Herschel Space Observatory and NASA's Spitzer Space Telescope. The colorful specks developing stars strung across the image are rapidly heating up and cooling down, speaking to the turbulent, rough-and-tumble process of reaching full stellar adulthood.

The rainbow of colors represents different wavelengths of infrared light captured by both Spitzer and Herschel. Spitzer is designed to see shorter infrared wavelengths than Herschel. By combining their observations, astronomers get a more complete picture of star formation. NASA's Jet Propulsion Laboratory in Pasadena, Calif., manages the Spitzer mission for NASA, and also plays an important role in the European Space Agency-led Herschel mission.

In the portion of the Orion nebula pictured, the telescopes' infrared vision reveals a host of embryonic stars hidden in gas and dust clouds. These stars are at the very earliest stages of evolution.

A star forms as a clump of this gas and dust collapses, creating a warm glob of material fed by an encircling disk. In several hundred thousand years, some of the forming stars will accrete enough material to trigger nuclear fusion at their cores, and then blaze into stardom.

Herschel mapped this region of the sky once a week for six weeks in the late winter and spring of 2011. To monitor for activity in protostars, Herschel's Photodetector Array Camera and Spectrometer probed long infrared wavelengths of light that trace cold dust particles, while Spitzer gauged the warmer dust emitting shorter infrared wavelengths. In this data, astronomers noticed that several of the young stars varied in their brightness by more than 20 percent over just a few weeks. As this twinkling comes from cool material emitting infrared light, the material must be far from the hot center of the young star, likely in the outer disk or surrounding gas envelope. At that distance, it should take years or centuries for material to spiral closer in to the growing starlet, rather than mere weeks.

Ultra-fast Outflows Help Monster Black Holes Shape Their Galaxies


A curious correlation between the mass of a galaxy's central black hole and the velocity of stars in a vast, roughly spherical structure known as its bulge has puzzled astronomers for years. An international team led by Francesco Tombesi at NASA's Goddard Space Flight Center in Greenbelt, Md., now has identified a new type of black-hole-driven outflow that appears to be both powerful enough and common enough to explain this link.

Most big galaxies contain a central black hole weighing millions of times the sun's mass, but galaxies hosting more massive black holes also possess bulges that contain, on average, faster-moving stars. This link suggested some sort of feedback mechanism between a galaxy's black hole and its star-formation processes. Yet there was no adequate explanation for how a monster black hole's activity, which strongly affects a region several times larger than our solar system, could influence a galaxy's bulge, which encompasses regions roughly a million times larger.

"This was a real conundrum. Everything was pointing to supermassive black holes as somehow driving this connection, but only now are we beginning to understand how they do it," Tombesi said.

Active black holes acquire their power by gradually accreting or "feeding" on million-degree gas stored in a vast surrounding disk. This hot disk lies within a corona of energetic particles, and while both are strong X-ray sources, this emission cannot account for galaxy-wide properties. Near the inner edge of the disk, a fraction of the matter orbiting a black hole often is redirected into an outward particle jet. Although these jets can hurl matter at half the speed of light, computer simulations show that they remain narrow and deposit most of their energy far beyond the galaxy's star-forming regions.

The Many Moods of Titan


A set of recent papers, many of which draw on data from NASA's Cassini spacecraft, reveal new details in the emerging picture of how Saturn's moon Titan shifts with the seasons and even throughout the day. The papers, published in the journal Planetary and Space Science in a special issue titled "Titan through Time", show how this largest moon of Saturn is a cousin – though a very peculiar cousin – of Earth.

"As a whole, these papers give us some new pieces in the jigsaw puzzle that is Titan," said Conor Nixon, a Cassini team scientist at the NASA Goddard Space Flight Center, Greenbelt, Md., who co-edited the special issue with Ralph Lorenz, a Cassini team scientist based at the Johns Hopkins University Applied Physics Laboratory, Laurel, Md. "They show us in detail how Titan's atmosphere and surface behave like Earth's – with clouds, rainfall, river valleys and lakes. They show us that the seasons change, too, on Titan, although in unexpected ways."

A paper led by Stephane Le Mouelic, a Cassini team associate at the French National Center for Scientific Research (CNRS) at the University of Nantes, highlights the kind of seasonal changes that occur at Titan with a set of the best looks yet at the vast north polar cloud.

A newly published selection of images – made from data collected by Cassini's visual and infrared mapping spectrometer over five years – shows how the cloud thinned out and retreated as winter turned to spring in the northern hemisphere.

Aiming for an Open Window

Why does NASA sometimes schedule a rocket launch for the middle of the night, or aim for a liftoff time when weather is notoriously unlikely to cooperate?

The simplicity of the question belies the complexity of the answer. The best time to start a mission is based on a blend of factors: the flight's target and goals, the needs of the spacecraft, the type of rocket, and the desired trajectory, which refers to the path the vehicle and spacecraft must take to successfully start the mission. Not only do these variables influence the preferred launch time the ideal time of departure but the overall length of the launch window, which can vary from one second to several hours.

The dynamics change from mission to mission, and determining the launch window is an important part of the overall flight design.

"The interesting thing about our job is each mission is almost completely different from any other mission," said Eric Haddox, the lead flight design engineer in NASA's Launch Services Program (LSP), based at Kennedy Space Center in Florida.

Haddox leads the team of agency and contractor personnel overseeing and integrating the trajectory design efforts of the spacecraft team and launch service contractor for each LSP mission. Once the spacecraft team identifies its needs, a rocket is selected, and the work of hammering out the best launch window and trajectory begins. Ultimately, the launch window and preferred liftoff time are set by the launch service contractor.

"We help everybody understand the requirements of the spacecraft and what the capabilities are of the launch vehicle, and try to mesh the two," Haddox explained.

NASA's Spitzer Finds Solid Buckyballs in Space

PASADENA, Calif. Astronomers using data from NASA's Spitzer Space Telescope have, for the first time, discovered buckyballs in a solid form in space. Prior to this discovery, the microscopic carbon spheres had been found only in gas form in the cosmos.

Formally named buckministerfullerene, buckyballs are named after their resemblance to the late architect Buckminster Fuller's geodesic domes. They are made up of 60 carbon atoms arranged into a hollow sphere, like a soccer ball. Their unusual structure makes them ideal candidates for electrical and chemical applications on Earth, including superconducting materials, medicines, water purification and armor.

In the latest discovery, scientists using Spitzer detected tiny specks of matter, or particles, consisting of stacked buckyballs. They found the particles around a pair of stars called "XX Ophiuchi," 6,500 light-years from Earth, and detected enough to fill the equivalent in volume to 10,000 Mount Everests.

"These buckyballs are stacked together to form a solid, like oranges in a crate," said Nye Evans of Keele University in England, lead author of a paper appearing in the Monthly Notices of the Royal Astronomical Society. "The particles we detected are minuscule, far smaller than the width of a hair, but each one would contain stacks of millions of buckyballs."

NASA's Chandra Finds Fastest Wind From Stellar-Mass Black Hole

Astronomers using NASA's Chandra X-ray Observatory have clocked the fastest wind yet discovered blowing off a disk around a stellar-mass black hole. This result has important implications for understanding how this type of black hole behaves.

The record-breaking wind is moving about 20 million mph, or about 3 percent of the speed of light. This is nearly 10 times faster than had ever been seen from a stellar-mass black hole.

Stellar-mass black holes are born when extremely massive stars collapse. They typically weigh between five and 10 times the mass of the sun. The stellar-mass black hole powering this super wind is known as IGR J17091-3624, or IGR J17091 for short.

"This is like the cosmic equivalent of winds from a category five hurricane," said Ashley King from the University of Michigan, lead author of the study published in the Feb. 20 issue of The Astrophysical Journal Letters. "We weren't expecting to see such powerful winds from a black hole like this."

The wind speed in IGR J17091 matches some of the fastest winds generated by supermassive black holes, objects millions or billions of times more massive.

NASA Spacecraft Reveals Recent Geological Activity on the Moon


New images from NASA's Lunar Reconnaissance Orbiter (LRO) spacecraft show the moon's crust is being stretched, forming minute valleys in a few small areas on the lunar surface. Scientists propose this geologic activity occurred less than 50 million years ago, which is considered recent compared to the moon's age of more than 4.5 billion years.

A team of researchers analyzing high-resolution images obtained by the Lunar Reconnaissance Orbiter Camera (LROC) show small, narrow trenches typically much longer than they are wide. This indicates the lunar crust is being pulled apart at these locations. These linear valleys, known as graben, form when the moon crust stretches, breaks and drops down along two bounding faults. A handful of these graben systems have been found across the lunar surface.

"We think the moon is in a general state of global contraction because of cooling of a still hot interior," said Thomas Watters of the Center for Earth and Planetary Studies at the Smithsonian's National Air and Space Museum in Washington, and lead author of a paper on this research appearing in the March issue of the journal Nature Geoscience. "The graben tell us forces acting to shrink the moon were overcome in places by forces acting to pull it apart. This means the contractional forces shrinking the moon cannot be large, or the small graben might never form."

The weak contraction suggests that the moon, unlike the terrestrial planets, did not completely melt in the very early stages of its evolution. Rather, observations support an alternative view that only the moon's exterior initially melted forming an ocean of molten rock.

Star Cluster Surrounds Wayward Black Hole in Cannibal Galaxy


Astronomers using NASA's Hubble Space Telescope may have found evidence for a cluster of young, blue stars encircling one of the first intermediate-mass black holes ever discovered. Astronomers believe the black hole may once have been at the core of a now-disintegrated unseen dwarf galaxy. The discovery of the black hole and the possible star cluster has important implications for understanding the evolution of supermassive black holes and galaxies.

Astronomers know how massive stars collapse to form black holes but it is not clear how supermassive black holes, which can weigh billions of times the mass of our sun, form in the cores of galaxies. One idea is that supermassive black holes may build up through the merger of smaller black holes.

Sean Farrell of the Sydney Institute for Astronomy in Australia discovered a middleweight black hole in 2009 using the European Space Agency's XMM-Newton X-ray space telescope. Known as HLX-1 (Hyper-Luminous X-ray source 1), the black hole has an estimated weight of about 20,000 solar masses. It lies towards the edge of the galaxy ESO 243-49, 290 million light-years from Earth.

Farrell then observed HLX-1 simultaneously with NASA's Swift observatory in X-ray and Hubble in near infrared, optical and ultraviolet wavelengths. The intensity and the color of the light may indicate the presence of a young, massive cluster of blue stars, perhaps 250-light-years across, encircling the black hole. Hubble can't resolve the stars individually because the suspected cluster is too far away. The brightness and color is consistent with other clusters of stars seen in other galaxies, but some of the light may be coming from the gaseous disk around the black hole.

'Honeycombs' and Hexacopters Help Tell Story of Mars


hexacopter-view of basalt columns in Washington State In a rough-and-tumble wonderland of plunging canyons and towering buttes, some of the still-raw bluffs are lined with soaring, six-sided stone columns so orderly and trim, they could almost pass as relics of a colossal temple. The secret of how these columns, packed in edge to edge, formed en masse from a sea of molten rock is encrypted in details as tiny as the cracks running across their faces. To add to this mystery's allure, decoding it might do more than reveal the life story of some local lava: it might help explain the history of Mars.

But with trips to Mars hard to come by, the interns of the 2011 Lunar and Planetary Sciences Academy (LPSA) at NASA's Goddard Space Flight Center in Greenbelt, Md., traveled to the Channeled Scablands of eastern Washington state. It's a region that has been helping scientists understand the forces that shape planetary surfaces for a century "The Legacy of Megafloods".

Here, the honeycomb-shaped columns bear a striking resemblance to those spotted in images of Marte Vallis and other regions of Mars. "Many of the landscape features in the Channeled Scablands are similar to ones seen on the surface of Mars, so we can study volcanic activity on Mars by looking in our own backyard," says Andrew Ryan, who was the student coordinator for the LPSA field trip and is now in graduate school at Arizona State University in Tempe.

What's Next For NASA?


The end of the space shuttle program does not mean the end of NASA, or even of NASA sending humans into space. NASA has a robust program of exploration, technology development and scientific research that will last for years to come. Here is what's next for NASA:

Exploration

NASA is designing and building the capabilities to send humans to explore the solar system, working toward a goal of landing humans on Mars. We will build the Multi-Purpose Crew Vehicle, based on the design for the Orion capsule, with a capacity to take four astronauts on 21-day missions.

NASA is also moving forward with the development of the Space Launch System -- an advanced heavy-lift launch vehicle that will provide an entirely new national capability for human exploration beyond Earth's orbit. The SLS rocket will use a liquid hydrogen and liquid oxygen propulsion system, which will include shuttle engines for the core stage and the J-2X engine for the upper stage.

We are developing the technologies we will need for human exploration of the solar system, including solar electric propulsion, refueling depots in orbit, radiation protection and high-reliability life support systems.

International Space Station

The International Space Station is the centerpiece of our human spaceflight activities in low Earth orbit. The ISS is fully staffed with a crew of six, and American astronauts will continue to live and work there in space 24 hours a day, 365 days a year. Part of the U.S. portion of the station has been designated as a national laboratory, and NASA is committed to using this unique resource for scientific research.

New Views Show Old NASA Mars Landers

The High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter recorded a scene on Jan. 29, 2012, that includes the first color image from orbit showing the three-petal lander of NASA's Mars Exploration Rover Spirit mission. Spirit drove off that lander platform in January 2004 and spent most of its six-year working life in a range of hills about two miles to the east.

Another recent image from HiRISE, taken on Jan. 26, 2012, shows NASA's Phoenix Mars Lander and its surroundings on far-northern Mars after that spacecraft's second Martian arctic winter. Phoenix exceeded its planned mission life in 2008, ending its work as solar energy waned during approach of its first Mars winter.

Previous color images from HiRISE have shown the Spirit rover itself, but all previous HiRISE views of the lander that delivered Spirit were in black and white.

Although neither Phoenix nor Spirit still send data to Earth, scientific findings from both missions continue as researchers analyze the wealth of data from the two. A recent report based on inspection of Martian soil particles with microscopes on Phoenix concluded that the soil has experienced very little interaction with liquid water over the past 600 million years.

The Mars Reconnaissance Orbiter has been examining Mars with six science instruments since 2006. Now in an extended mission, the orbiter continues to provide insights into the planet's ancient environments and how processes such as wind, meteorite impacts and seasonal frosts are continuing to affect the Martian surface today. This mission has returned more data about Mars than all other orbital and surface missions combined.

Planck All-Sky Images Show Cold Gas and Strange Haze


New images from the Planck mission show previously undiscovered islands of star formation and a mysterious haze of microwave emissions in our Milky Way galaxy. The views give scientists new treasures to mine and take them closer to understanding the secrets of our galaxy.

Planck is a European Space Agency mission with significant NASA participation.

"The images reveal two exciting aspects of the galaxy in which we live," said Planck scientist Krzysztof M. Gorski from NASA's Jet Propulsion Laboratory in Pasadena, Calif., and Warsaw University Observatory in Poland. "They show a haze around the center of the galaxy, and cold gas where we never saw it before."

The new images show the entire sky, dominated by the murky band of our Milky Way galaxy. One of them shows the unexplained haze of microwave light previously hinted at in measurements by NASA's Wilkinson Microwave Anisotropy Probe (WMAP).

"The haze comes from the region surrounding the center of our galaxy and looks like a form of light energy produced when electrons accelerate through magnetic fields," said Davide Pietrobon, another JPL Planck scientist.

"We're puzzled though, because this haze is brighter at shorter wavelengths than similar light emitted elsewhere in the galaxy," added Gorski.

Several explanations have been proposed for this unusual behaviour.

"Theories include higher numbers of supernovae, galactic winds and even the annihilation of dark-matter particles," said Greg Dobler, a Planck collaborator from the University of California in Santa Barbara, Calif. Dark matter makes up about a quarter of our universe, but scientists don't know exactly what it is.

Mars Science Laboratory Mission Status Report

PASADENA, Calif. Engineers have found the root cause of a computer reset that occurred two months ago on NASA's Mars Science Laboratory and have determined how to correct it.

The fix involves changing how certain unused data-holding locations, called registers, are configured in the memory management of the type of computer chip used on the spacecraft. Billions of runs on a test computer with the modified register configuration yielded no repeat of the reset behavior. The mission team made this software change on the spacecraft's computer last week and confirmed this week that the update is successful.

The reset occurred Nov. 29, 2011, three days after launch, during use of the craft's star scanner. The cause has been identified as a previously unknown design idiosyncrasy in the memory management unit of the Mars Science Laboratory computer processor. In rare sets of circumstances unique to how this mission uses the processor, cache access errors could occur, resulting in instructions not being executed properly. This is what happened on the spacecraft on Nov. 29.

"Good detective work on understanding why the reset occurred has yielded a way to prevent it from occurring again," said Mars Science Laboratory Deputy Project Manager Richard Cook of NASA's Jet Propulsion Laboratory, Pasadena, Calif. "The successful resolution of this problem was the outcome of productive teamwork by engineers at the computer manufacturer and JPL."

The Mars-bound spacecraft performed a brief alignment activity using its star scanner and sun sensor on Jan. 26. During the alignment observations, the star scanner detected Mars.

NASA's Chandra Finds Milky Way's Black Hole Grazing on Asteroids


The giant black hole at the center of the Milky Way may be vaporizing and devouring asteroids, which could explain the frequent flares observed, according to astronomers using data from NASA's Chandra X-ray Observatory.

For several years Chandra has detected X-ray flares about once a day from the supermassive black hole known as Sagittarius A*, or "Sgr A*" for short. The flares last a few hours with brightness ranging from a few times to nearly one hundred times that of the black hole's regular output. The flares also have been seen in infrared data from ESO's Very Large Telescope in Chile.

"People have had doubts about whether asteroids could form at all in the harsh environment near a supermassive black hole," said Kastytis Zubovas of the University of Leicester in the United Kingdom, and lead author of the report appearing in the Monthly Notices of the Royal Astronomical Society. "It's exciting because our study suggests that a huge number of them are needed to produce these flares."

Zubovas and his colleagues suggest there is a cloud around Sgr A* containing trillions of asteroids and comets, stripped from their parent stars. Asteroids passing within about 100 million miles of the black hole, roughly the distance between the Earth and the sun, would be torn into pieces by the tidal forces from the black hole.

These fragments then would be vaporized by friction as they pass through the hot, thin gas flowing onto Sgr A*, similar to a meteor heating up and glowing as it falls through Earth's atmosphere. A flare is produced and the remains of the asteroid are swallowed eventually by the black hole.

"An asteroid's orbit can change if it ventures too close to a star or planet near Sgr A*," said co-author Sergei Nayakshin, also of the University of Leicester. "If it's thrown toward the black hole, it's doomed."

Young Stars at Home in Ancient Cluster

Looking like a hoard of gems fit for an emperor's collection, this deep sky object called NGC 6752 is in fact far more worthy of admiration. It is a globular cluster, and at over 10 billion years old is one the most ancient collections of stars known. It has been blazing for well over twice as long as our solar system has existed.

NGC 6752 contains a high number of "blue straggler'' stars, some of which are visible in this image. These stars display characteristics of stars younger than their neighbors, despite models suggesting that most of the stars within globular clusters should have formed at approximately the same time. Their origin is therefore something of a mystery.

Studies of NGC 6752 may shed light on this situation. It appears that a very high number up to 38 percent of the stars within its core region are binary systems. Collisions between stars in this turbulent area could produce the blue stragglers that are so prevalent.

Lying 13,000 light-years distant, NGC 6752 is far beyond our reach, yet the clarity of Hubble's images brings it tantalizingly close.

NASA Mission Returns First Video From Moon's Far Side


PASADENA, Calif. A camera aboard one of NASA's twin Gravity Recovery And Interior Laboratory (GRAIL) lunar spacecraft has returned its first unique view of the far side of the moon. MoonKAM, or Moon Knowledge Acquired by Middle school students, will be used by students nationwide to select lunar images for study.

GRAIL consists of two identical spacecraft, recently named Ebb and Flow, each of which is equipped with a MoonKAM. The images were taken as part of a test of Ebb's MoonKAM on Jan. 19. The GRAIL project plans to test the MoonKAM aboard Flow at a later date.

In the video, the north pole of the moon is visible at the top of the screen as the spacecraft flies toward the lunar south pole. One of the first prominent geological features seen on the lower third of the moon is the Mare Orientale, a 560-mile-wide (900 kilometer) impact basin that straddles both the moon's near and far side.

The clip ends with rugged terrain just short of the lunar south pole. To the left of center, near the bottom of the screen, is the 93-mile-wide (149 kilometer) Drygalski crater with a distinctive star-shaped formation in the middle. The formation is a central peak, created many billions of years ago by a comet or asteroid impact.

"The quality of the video is excellent and should energize our MoonKAM students as they prepare to explore the moon," said Maria Zuber, GRAIL principal investigator from the Massachusetts Institute of Technology in Cambridge.

The twin spacecraft successfully achieved lunar orbit this past New Year's Eve and New Year's Day. Previously named GRAIL-A and GRAIL-B, the washing machine-sized spacecraft received their new names from fourth graders at the Emily Dickinson Elementary School in Bozeman, Mont., following a nationwide student naming contest.

VIIRS Eastern Hemisphere Image - Behind the Scenes


The Suomi NPP satellite is in a polar orbit around Earth at an altitude of 512 miles (about 824 kilometers), but the perspective of the new Eastern hemisphere 'Blue Marble' is from 7,918 miles (about 12,743 kilometers). NASA scientist Norman Kuring managed to 'step back' from Earth to get the big picture by combining data from six different orbits of the Suomi NPP satellite. Or putting it a different way, the satellite flew above this area of Earth six times over an eight hour time period. Norman took those six sets of data and combined them into one image.

The new image is a composite of six separate orbits taken on January 23, 2012 by the Suomi National Polar-orbiting Partnership satellite. Both of these new 'Blue Marble' images are images taken by a new instrument flying aboard Suomi NPP, the Visible Infrared Imaging Radiometer Suite (VIIRS).

Compiled by NASA Goddard scientist Norman Kuring, this image has the perspective of a viewer looking down from 7,918 miles (about 12,742 kilometers) above the Earth's surface from a viewpoint of 10 degrees South by 45 degrees East. The four vertical lines of 'haze' visible in this image shows the reflection of sunlight off the ocean, or 'glint,' that VIIRS captured as it orbited the globe. Suomi NPP is the result of a partnership between NASA, NOAA and the Department of Defense.

Using a basketball you can get a good idea of how far away the Suomi NPP satellite is from Earth. Take a basketball that has a diameter of 10 inches (about 25 centimeters) and say that's 'Earth.' (For the record, Earth has a diameter of about 7,926 miles (about 12,756 kilometers)).

So to get the same view of Earth as the VIIRS instrument aboard the Suomi NPP satellite, hold the basketball five-eighth of an inch (about one-and-a-half centimeters) away from your face.

Also visit : graphic design dubai

Hubble Zooms in on a Magnified Galaxy


Thanks to the presence of a natural "zoom lens" in space, NASA's Hubble Space Telescope got a uniquely close-up look at the brightest "magnified" galaxy yet discovered.

This observation provides a unique opportunity to study the physical properties of a galaxy vigorously forming stars when the universe was only one-third its present age.

A so-called gravitational lens is produced when space is warped by a massive foreground object, whether it is the sun, a black hole or an entire cluster of galaxies. The light from more-distant background objects is distorted, brightened and magnified as it passes through this gravitationally disturbed region.

A team of astronomers led by Jane Rigby of NASA's Goddard Space Flight Center in Greenbelt, Md., aimed Hubble at one of the most striking examples of gravitational lensing, a nearly 90-degree arc of light in the galaxy cluster RCS2 032727-132623. Hubble's view of the distant background galaxy is significantly more detailed than could ever be achieved without the help of the gravitational lens.

The results have been accepted for publication in the Astrophysical Journal, in a paper led by Keren Sharon of the Kavli Institute for Cosmological Physics at the University of Chicago. Professor Michael Gladders and graduate student Eva Wuyts of the University of Chicago were also key team members.

The presence of the lens helps show how galaxies evolved from 10 billion years ago to today. While nearby galaxies are fully mature and are at the tail end of their star-formation histories, distant galaxies tell us about the universe's formative years. The light from those early events is just now arriving at Earth. Very distant galaxies are not only faint but also appear small on the sky. Astronomers would like to see how star formation progressed deep within these galaxies. Such details would be beyond the reach of Hubble's vision were it not for the magnification made possible by gravity in the intervening lens region.

Also visit : graphic design dubai

Remnant of an Explosion With a Powerful Kick?

Vital clues about the devastating ends to the lives of massive stars can be found by studying the aftermath of their explosions. In its more than twelve years of science operations, NASA's Chandra X-ray Observatory has studied many of these supernova remnants sprinkled across the Galaxy.

The latest example of this important investigation is Chandra's new image of the supernova remnant known as G350.1+0.3. This stellar debris field is located some 14,700 light years from the Earth toward the center of the Milky Way.

Evidence from Chandra and from ESA's XMM-Newton telescope suggest that a compact object within G350.1+0.3 may be the dense core of the star that exploded. The position of this likely neutron star, seen by the arrow pointing to "neutron star" in the inset image, is well away from the center of the X-ray emission. If the supernova explosion occurred near the center of the X-ray emission then the neutron star must have received a powerful kick in the supernova explosion.

Data from Chandra and other telescopes suggest this supernova remnant, as it appears in the image, is between 600 and 1,200 years old. If the estimated location of the explosion is correct, this means that the neutron star has been moving at a speed of at least 3 million miles per hour since the explosion This is comparable to the exceptionally high speed derived for the neutron star in Puppis A, another neutron star moving at a blistering pace within a supernova remnant. The G350+1+0.3 data provide new evidence that extremely powerful "kicks" may be imparted to neutron stars left behind once the supernova has exploded.

Also visit : graphic design dubai

IBEX: Glimpses of the Interstellar Material Beyond our Solar System

A great magnetic bubble surrounds the solar system as it cruises through the galaxy. The sun pumps the inside of the bubble full of solar particles that stream out to the edge until they collide with the material that fills the rest of the galaxy, at a complex boundary called the heliosheath. On the other side of the boundary, electrically charged particles from the galactic wind blow by, but rebound off the heliosheath, never to enter the solar system. Neutral particles, on the other hand, are a different story. They saunter across the boundary as if it weren't there, continuing on another 7.5 billion miles for 30 years until they get caught by the sun's gravity, and sling shot around the star.

There, NASA's Interstellar Boundary Explorer lies in wait for them. Known as IBEX for short, this spacecraft methodically measures these samples of the mysterious neighborhood beyond our home. IBEX scans the entire sky once a year, and every February, its instruments point in the correct direction to intercept incoming neutral atoms. IBEX counted those atoms in 2009 and 2010 and has now captured the best and most complete glimpse of the material that lies so far outside our own system.

"We've directly measured four separate types of atoms from interstellar space and the composition just doesn't match up with what we see in the solar system," says Eric Christian, mission scientist for IBEX at NASA's Goddard Space Flight Center in Greenbelt, Md. "IBEX's observations shed a whole new light on the mysterious zone where the solar system ends and interstellar space begins."

More than just helping to determine the distribution of elements in the galactic wind, these new measurements give clues about how and where our solar system formed, the forces that physically shape our solar system, and even the history of other stars in the Milky Way.

Also visit : graphic design dubai