NASA's Webb Telescope Flight Backplane Section Completed


The center section of the backplane structure that will fly on NASA's James Webb Space Telescope has been completed, marking an important milestone in the telescope's hardware development. The backplane will support the telescope's beryllium mirrors, instruments, thermal control systems and other hardware throughout its mission.

"Completing the center section of the backplane is an important step in completing the sophisticated telescope structure," said Lee Feinberg, optical telescope element manager for the Webb telescope at NASA's Goddard Space Flight Center in Greenbelt, Md. "This fabrication success is the result of innovative engineering dating back to the technology demonstration phase of the program."

The center section, or primary mirror backplane support structure, will hold Webb's 18-segment, 21-foot-diameter primary mirror nearly motionless while the telescope peers into deep space. The center section is the first of the three sections of the backplane to be completed.

NASA Measuring approximately 24 by 12 feet yet weighing only 500 pounds, the center section of the backplane meets unprecedented thermal stability requirements. The backplane holds the alignment of the telescope's optics through the rigors of launch and over a wide range of operating temperatures, which reach as cold as - 406 degrees Fahrenheit. During science operations, the backplane precisely keeps the 18 primary mirror segments in place, permitting the mirrors to form a single, pristine shape needed to take sharp images.

NASA's Spitzer Finds Galaxy with Split Personality


PASADENA, Calif. While some galaxies are rotund and others are slender disks like our spiral Milky Way, new observations from NASA's Spitzer Space Telescope show that the Sombrero galaxy is both. The galaxy, which is a round elliptical galaxy with a thin disk embedded inside, is one of the first known to exhibit characteristics of the two different types. The findings will lead to a better understanding of galaxy evolution, a topic still poorly understood.


"The Sombrero is more complex than previously thought," said Dimitri Gadotti of the European Southern Observatory in Chile and lead author of a new paper on the findings appearing in the Monthly Notices of the Royal Astronomical Society. "The only way to understand all we know about this galaxy is to think of it as two galaxies, one inside the other."

The Sombrero galaxy, also known as NGC 4594, is located 28 million light-years away in the constellation Virgo. From our viewpoint on Earth, we can see the thin edge of its flat disk and a central bulge of stars, making it resemble a wide-brimmed hat. Astronomers do not know whether the Sombrero's disk is shaped like a ring or a spiral, but agree it belongs to the disk class.

"Spitzer is helping to unravel secrets behind an object that has been imaged thousands of times," said Sean Carey of NASA's Spitzer Science Center at the California Institute of Technology in Pasadena. "It is intriguing Spitzer can read the fossil record of events that occurred billions of years ago within this beautiful and archetypal galaxy."

Hubble Peeks inside a Stellar Cloud


These bright stars shining through what looks like a haze in the night sky are part of a young stellar grouping in one of the largest known star formation regions of the Large Magellanic Cloud (LMC), a dwarf satellite galaxy of the Milky Way. The image was captured by the NASA/ESA Hubble Space Telescope's Wide Field Planetary Camera 2.

The stellar grouping is known to stargazers as NGC 2040 or LH 88. It is essentially a very loose star cluster whose stars have a common origin and are drifting together through space. There are three different types of stellar associations defined by their stellar properties. NGC 2040 is an OB association, a grouping that usually contains 10 to 100 stars of type O and B these are high-mass stars that have short but brilliant lives.

It is thought that most of the stars in the Milky Way were born in OB associations.

There are several such groupings of stars in the LMC. Just like the others, LH 88 consists of several high-mass young stars in a large nebula of partially ionized hydrogen gas, and lies in what is known to be a supergiant shell of gas called LMC 4.

Over a period of several million years, thousands of stars may form in these supergiant shells, which are the largest interstellar structures in galaxies. The shells themselves are believed to have been created by strong stellar winds and clustered supernova explosions of massive stars that blow away surrounding dust and gas, and in turn trigger further episodes of star formation.

NASA's Lunar Reconnaissance Orbiter Brings 'Earthrise' to Everyone


Imagine yourself in orbit, your spacecraft flying backward with its small window facing down toward the surface of the moon. You peer out, scouring the ash-colored contours of the cratered landscape for traces of ancient volcanic activity. Around you, the silent, velvety blackness of space stretches out in every direction.

The spacecraft rolls over, and you glimpse a sliver of intense light starting to climb over the rough horizon. It might be dawn, except that the bright sliver quickly morphs into an arc of dazzling white swirled with vivid blue and then rises far enough to be recognized as the brilliant, marbled Earth. Captured on film, this breathtaking view becomes the iconic photograph "Earthrise."

On December 24, 1968, three people saw this happen firsthand: Apollo 8 Commander Frank Borman and crew members William A. Anders and James A. Lovell, Jr. Now, in honor of Earth Day 2012, the rest of us can see what that was like in a new NASA visualization, which draws on richly detailed maps of the moon's surface made from data gathered by NASA's Lunar Reconnaissance Orbiter (LRO).

"This visualization recreates for everyone the wondrous experience of seeing Earth from that privileged viewpoint," says LRO Project Scientist Rich Vondrak of NASA's Goddard Space Flight Center in Greenbelt, Md.

Hubble's Panoramic View of a Turbulent Star-Making Region


Several million young stars are vying for attention in a new NASA Hubble Space Telescope image of a raucous stellar breeding ground in 30 Doradus, a star-forming complex located in the heart of the Tarantula nebula.

The new image comprises one of the largest mosaics ever assembled from Hubble photos and includes observations taken by Hubble's Wide Field Camera 3 and Advanced Camera for Surveys. NASA and the Space Telescope Science Institute (STScI) in Baltimore released the image today in celebration of Hubble's 22nd anniversary.

"Hubble is the world's premiere science instrument for making celestial observations, which allow us to unravel the mysteries of the universe," said John Grunsfeld, associate administrator for NASA's Science Mission Directorate in Washington and three-time Hubble repair astronaut. "In recognition of Hubble's 22nd birthday, the new image of the 30 Doradus region, the birth place for new stars, is more than a fitting anniversary image."

30 Doradus is the brightest star-forming region in our galactic neighborhood and home to the most massive stars ever seen. The nebula is 170,000 light-years away in the Large Magellanic Cloud, a small satellite galaxy of the Milky Way. No known star-forming region in our galaxy is as large or as prolific as 30 Doradus.

NASA Views Our Perpetual Ocean

The visualization covers the period June 2005 to December 2007 and is based on a synthesis of a numerical model with observational data, created by a NASA project called Estimating the Circulation and Climate of the Ocean, or ECCO for short. ECCO is a joint project between the Massachusetts Institute of Technology and NASA's Jet Propulsion Laboratory in Pasadena, Calif. ECCO uses advanced mathematical tools to combine observations with the MIT numerical ocean model to obtain realistic descriptions of how ocean circulation evolves over time.

These model-data syntheses are among the largest computations of their kind ever undertaken. They are made possible by high-end computing resources provided by NASA's Ames Research Center in Moffett Field, Calif.

ECCO model-data syntheses are being used to quantify the ocean role in the global carbon cycle, to understand the recent evolution of the polar oceans, to monitor time-evolving heat, water, and chemical exchanges within and between different components of the Earth system, and for many other science applications.

In the particular model-data synthesis used for this visualization, only the larger, ocean basin-wide scales have been adjusted to fit observations. Smaller-scale ocean currents are free to evolve on their own according to the computer model's equations. Due to the limited resolution of this particular model, only the larger eddies are represented, and tend to look more 'perfect' than they are in real life. Despite these model limitations, the visualization offers a realistic study in both the order and the chaos of the circulating waters that populate Earth’s ocean.

Herschel Spots Comet Massacre Around Nearby Star


The Herschel Space Observatory has studied the dusty belt around the nearby star Fomalhaut. Scientists say the dust appears to be coming from collisions that destroy up to thousands of icy comets every day.

Herschel is a European Space Agency mission with important NASA contributions.

Fomalhaut is a young star, just a few hundred million years old, and twice as massive as the sun. Its dust belt was discovered in the 1980s by the Infrared Astronomical Satellite, in which NASA played a key role. Herschel’s new images of the belt show it in much more detail at longer infrared wavelengths than ever before.

The results indicate the grains in the dust belt are fluffy and tiny, only a few millionths of a meter across (one meter is about 3 feet). They are similar to dust particles released from comets in our own solar system.

Bram Acke of the University of Leuven in Belgium led the observations. He and his colleagues say the dust is being regenerated in the belt through continuous collisions between comets. Each day, the equivalent of either two comets 6.2 miles in size (10 kilometers) or 2,000 comets .62 miles in size (1 kilometer) must be completely crushed into small fluffy, dust particles. What's more, there are a ton of comets: the team estimates between 260 billion and 83 trillion in the belt!

Flying Formation Around the Moon at 3,600 MPH

The act of two or more aircraft flying together in a disciplined, synchronized manner is one of the cornerstones of military aviation, as well as just about any organized air show. But as amazing as the U.S. Navy's elite Blue Angels or the U.S. Air Force's Thunder birds are to behold, they remain essentially landlocked, anchored if you will, to our planet and its tenuous atmosphere. What if you could take the level of precision of these great aviators to, say, the moon?

"Our job is to ensure our two GRAIL spacecraft are flying a very, very accurate trail formation in lunar orbit," said David Lehman, GRAIL project manager at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "We need to do this so our scientists can get the data they need."

Essentially, trail formation means one aircraft (or spacecraft in this case), follows directly behind the other. Ebb and Flow, the twins of NASA's GRAIL (Gravity Recovery And Interior Laboratory) mission, are by no means the first to synch up altitude and "air" speed while zipping over the craters, mountains, hills and rills of Earth's natural satellite. That honor goes to the crew of Apollo 10, who in May 1969 performed a dress rehearsal for the first lunar landing. But as accurate as the astronauts aboard lunar module "Snoopy" and command module "Charlie Brown" were in their piloting, it is hard to imagine they could keep as exacting a position as Ebb and Flow. "It is an apples and oranges comparison," said Lehman. "Lunar formation in Apollo was about getting a crew to the lunar surface, returning to lunar orbit and docking, so they could get back safely to Earth. For GRAIL, the formation flying is about the science, and that is why we have to make our measurements so precisely."

12-Mile-High Martian Dust Devil Caught in Act

A Martian dust devil roughly 12 miles high (20 kilometers) was captured whirling its way along the Amazonis Planitia region of Northern Mars on March 14. It was imaged by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. Despite its height, the plume is little more than three-quarters of a football field wide (70 yards, or 70 meters).

Dust devils occur on Earth as well as on Mars. They are spinning columns of air, made visible by the dust they pull off the ground. Unlike a tornado, a dust devil typically forms on a clear day when the ground is heated by the sun, warming the air just above the ground. As heated air near the surface rises quickly through a small pocket of cooler air above it, the air may begin to rotate, if conditions are just right.

The image was taken during late northern spring, two weeks short of the northern summer solstice, a time when the ground in the northern mid-latitudes is being heated most strongly by the sun.

The Mars Reconnaissance Orbiter has been examining the Red Planet with six science instruments since 2006. Now in an extended mission, the orbiter continues to provide insights into the planet's ancient environments and how processes such as wind, meteorite impacts and seasonal frosts continue to affect the Martian surface today. This mission has returned more data about Mars than all other orbital and surface missions combined.

SDO and STEREO Spot Something New On the Sun

One day in the fall of 2011, Neil Sheeley, a solar scientist at the Naval Research Laboratory in Washington, D.C., did what he always does look through the daily images of the sun from NASA's Solar Dynamics Observatory (SDO).

But on this day he saw something he'd never noticed before: a pattern of cells with bright centers and dark boundaries occurring in the sun's atmosphere, the corona. These cells looked somewhat like a cell pattern that occurs on the sun's surface similar to the bubbles that rise to the top of boiling water but it was a surprise to find this pattern higher up in the corona, which is normally dominated by bright loops and dark coronal holes.

Sheeley discussed the images with his Naval Research Laboratory colleague Harry Warren, and together they set out to learn more about the cells. Their search included observations from a fleet of NASA spacecraft called the Heliophysics System Observatory that provided separate viewpoints from different places around the sun. They describe the properties of these previously unreported solar features, dubbed "coronal cells," in a paper published online in The Astrophysical Journal on March 20, 2012 that will appear in print on April 10.

The coronal cells occur in areas between coronal holes colder and less dense areas of the corona seen as dark regions in images and "filament channels" which mark the boundaries between sections of upward-pointing magnetic fields and downward-pointing ones. Understanding how these cells evolve can provide clues as to the changing magnetic fields at the boundaries of coronal holes and how they affect the steady emission of solar material known as the solar wind streaming from these holes.

Look Out for Those Rocks!

The words "hazard field" certainly never were associated with the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. To the contrary, the goal was to keep the runway area free of any hazards that might endanger the shuttle and crew during landing. But that is about to change when, in the not-too-distant future, the facility will offer a prototype space vehicle the kind of landing hazard field necessary for realistic testing.

An area near the runway will be turned into a field of hazards as part of the next phase of tests for the Project Morpheus lander, which integrates technologies that someday could be used to build future spacecraft destined for asteroids, Mars or the moon. The lander has been undergoing testing at NASA's Johnson Space Center in Houston for almost a year in preparation for its first free flight. During that flight testing, it will rise almost 100 feet into the air, fly 100 feet laterally, and then land safely.

Once the lander has successfully completed a planned series of these free flight tests, the team will move on to its next challenge flying a kilometer-long simulated surface approach while avoiding hazards in a landing field. Morpheus integrates an autonomous landing and hazard avoidance technology (ALHAT) payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent, and land safely.

Launch of NASA's NuSTAR Mission Postponed

PASADENA, Calif. The planned launch of NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) mission has been postponed after a March 15 launch status meeting. The launch will be rescheduled to allow additional time to confirm the flight software used by the launch vehicle's flight computer will issue commands to the rocket as intended.

The spacecraft will lift off on an Orbital Sciences Pegasus XL rocket, which will be released from an aircraft taking off from the Reagan Test Site on the Kwajalein Atoll in the Marshall Islands. The time required to complete the software review has moved NuSTAR beyond the March timeframe currently available on the range at Kwajalein. In the interim, NASA will coordinate with the launch site to determine the earliest possible launch opportunity. This is expected to be within the next two months.

NuSTAR will use advanced optics and detectors, allowing astronomers to observe the high-energy X-ray sky with much greater sensitivity and clarity than any mission flown before. The mission will advance our understanding of how structures in the universe form and evolve. It will observe some of the hottest, densest and most energetic objects in the universe, including black holes, their high-speed particle jets, ultra-dense neutron stars, supernova remnants and our sun.

NuSTAR is a Small Explorer mission led by the California Institute of Technology and managed by NASA's Jet Propulsion Laboratory, both in Pasadena, Calif., for NASA's Science Mission Directorate. The spacecraft was built by Orbital Sciences Corporation, Dulles, Va. Its instrument was built by a consortium including Caltech; JPL; the University of California, Berkeley; Columbia University, New York.

A Spiral Galaxy in Hydra

This image from the NASA/ESA Hubble Space Telescope shows NGC 4980, a spiral galaxy in the southern constellation of Hydra. The shape of NGC 4980 appears slightly deformed, something which is often a sign of recent tidal interactions with another galaxy. In this galaxy’s case, however, this appears not to be the case as there are no other galaxies in its immediate vicinity.

The image was produced as part of a research program into the nature of galactic bulges, the bright, dense, elliptical centers of galaxies. Classical bulges are relatively disordered, with stars orbiting the galactic center in all directions. In contrast, in galaxies with so-called pseudobulges, or disc-type bulges, the movement of the spiral arms is preserved right to the center of the galaxy.

Although the spiral structure is relatively subtle in this image, scientists have shown that NGC 4980 has a disc-type bulge, and its rotating spiral structure extends to the very center of the galaxy.

A galaxies' bright arms are the location of new star formation in spiral galaxies, and NGC 4980 is no exception. The galaxy's arms are traced out by blue pockets of extremely hot newborn stars are visible across much of its disc. This sets it apart from the reddish galaxies visible in the background, which are distant elliptical galaxies made up of much older, and hence redder and the stars.

This image is composed of exposures taken in visible and infrared light by Hubble's Advanced Camera for Surveys. The image is approximately 3.3 by 1.5 arcminutes in size.

Dark Heart of a Cosmic Collision


Infrared and X-ray observations from two space telescopes have been combined to create a unique look at violent events within the giant galaxy Centaurus A. The observations strengthen the view that the galaxy may have been created by the cataclysmic collision of two older galaxies.

The infrared light was captured by the European Space Agency's Herschel Space Observatory, a mission with important NASA contributions. The X-ray observations were made by the European Space Agency's XMM-Newton space telescope.

Centaurus A is the closest giant elliptical galaxy to Earth, at a distance of around 12 million light-years. It stands out because it harbors a massive black hole at its core and emits intense blasts of radio waves.

While previous images taken in visible light hinted at the complex inner structure in Centaurus A, combining the output of two orbiting observatories working at almost opposite ends of the electromagnetic spectrum has revealed the unusual structure in much greater detail.

The galaxy was observed by astronomer Sir John Herschel in 1847 during his survey of the southern skies. Now, more than 160 years later, the observatory bearing his family name has played a unique role in uncovering some of its secrets.

Cosmic 'Leaf Blower' Robs Galaxy of Star-Making Fuel

Supernova explosions and the jets of a monstrous black hole are scattering a galaxy's star-making gas like a cosmic leaf blower, a new study finds. The findings, which relied on ultraviolet observations from NASA's Galaxy Evolution Explorer and a host of other instruments, fill an important gap in the current understanding of galactic evolution.

It has long been known that gas-rich spiral galaxies like our Milky Way smash together to create elliptical galaxies such as the one observed in the study. These big, round galaxy have very little star formation. The reddish glow of aging stars comes to dominate the complexion of elliptical galaxies, so astronomers refer to them as "red and dead."

The process that drives the dramatic transformation from spiral galactic youth to elderly elliptical is the rapid loss of cool gas, the fuel from which new stars form. Supernova explosions can start the decline in star formation, and then shock waves from the supermassive black hole finish the job. Now astronomers think they have identified a recently merged galaxy where this gas loss has just gotten underway.

"We have caught a galaxy in the act of destroying its gaseous fuel for new stars and marching toward being a red-and-dead type of galaxy," said Ananda Hota, lead author of a new paper in the Monthly Notices of the Royal Astronomical Society. Hota, an astronomer in Pune, India, conducted the study as a post-doctoral research fellow at the Institute of Astronomy & Astrophysics at Academia Sinica in Taipei, Taiwan.

"We have found a crucial missing piece to connect and solve the puzzle of this phase of galaxy evolution," Hota added.

Hubble Spies a Spiral Galaxy Edge-on


The NASA/ESA Hubble Space Telescope has spotted the "UFO Galaxy." NGC 2683 is a spiral galaxy seen almost edge-on, giving it the shape of a classic science fiction spaceship. This is why the astronomers at the Astronaut Memorial Planetarium and Observatory, Cocoa, Fla., gave it this attention-grabbing nickname.

While a bird's eye view lets us see the detailed structure of a galaxy (such as this Hubble image of a barred spiral), a side-on view has its own perks. In particular, it gives astronomers a great opportunity to see the delicate dusty lanes of the spiral arms silhouetted against the golden haze of the galaxy’s core. In addition, brilliant clusters of young blue stars shine scattered throughout the disc, mapping the galaxy’s star-forming regions.

Perhaps surprisingly, side-on views of galaxies like this one do not prevent astronomers from deducing their structures. Studies of the properties of the light coming from NGC 2683 suggest that this is a barred spiral galaxy, even though the angle we see it at does not let us see this directly.

NGC 2683, discovered on Feb. 5, 1788, by the famous astronomer William Herschel, lies in the Northern constellation of Lynx. A constellation named not because of its resemblance to the feline animal, but because it is fairly faint, requiring the "sensitive eyes of a cat" to discern it. And when you manage to get a look at it, you’ll find treasures like this, making it well worth the effort.

Fermi Observations of Dwarf Galaxies Provide New Insights on Dark Matter

There's more to the cosmos than meets the eye. About 80 percent of the matter in the universe is invisible to telescopes, yet its gravitational influence is manifest in the orbital speeds of stars around galaxies and in the motions of clusters of galaxies. Yet, despite decades of effort, no one knows what this "dark matter" really is. Many scientists think it's likely that the mystery will be solved with the discovery of new kinds of subatomic particles, types necessarily different from those composing atoms of the ordinary matter all around us. The search to detect and identify these particles is underway in experiments both around the globe and above it.

Scientists working with data from NASA's Fermi Gamma-ray Space Telescope have looked for signals from some of these hypothetical particles by zeroing in on 10 small, faint galaxies that orbit our own. Although no signals have been detected, a novel analysis technique applied to two years of data from the observatory's Large Area Telescope (LAT) has essentially eliminated these particle candidates for the first time.

"In effect, the Fermi LAT analysis compresses the theoretical box where these particles can hide," said Jennifer Siegal-Gaskins, a physicist at the California Institute of Technology in Pasadena, Calif., and a member of the Fermi LAT Collaboration. Earlier today, she discussed the latest results of space based dark matter searches in an invited talk at a meeting of the American Physical Society (APS) in Atlanta, Ga.

WIMPs, or Weakly Interacting Massive Particles, represent a favored class of dark matter candidates. Some WIMPs may mutually annihilate when pairs of them interact, a process expected to produce gamma rays the most energetic form of light that the LAT is designed to detect.