WASHINGTON -- NASA scientists are seeing new evidence that suggests traces of water on Mars are under a thin varnish of iron oxide, or rust, similar to conditions found on desert rocks in California's Mojave Desert.
Mars could be spotted with many more patches of carbonates than originally suspected. Carbonates are minerals that form readily in large bodies of water and can point to a planet's wet history. Although only a few small outcrops of carbonates have been detected on Mars, scientists believe many more examples are blocked from view by the rust. The findings appear in the Friday July 1, online edition of the International Journal of Astrobiology.
"The plausibility of life on Mars depends on whether liquid water dotted its landscape for thousands or millions of years," said Janice Bishop, a planetary scientist at NASA's Ames Research Center at the SETI Institute at Moffett Field, Calif., and the paper's lead author. "It's possible that an important clue, the presence of carbonates, has largely escaped the notice of investigators trying to learn if liquid water once pooled on the Red Planet."
Scientists conduct field experiments in desert regions because the extremely dry conditions are similar to Mars. Researchers realized the importance of the varnish earlier this year when Bishop and Chris McKay, a planetary scientist at Ames investigated carbonate rocks coated with iron oxides collected in a location called Little Red Hill in the Mojave Desert.
"When we examined the carbonate rocks in the lab, it became evident that an iron oxide skin may be hindering the search for clues to the Red Planet's hydrological history," McKay said. "We found that the varnish both altered and partially masked the spectral signature of the carbonates."
McKay also found dehydration-resistant blue-green algae under the rock varnish. Scientists believe the varnish may have extended temporarily the time that Mars was habitable, as the planet's surface slowly dried up.
"The organisms in the Mojave Desert are protected from deadly ultraviolet light by the iron oxide coating," McKay said. "This survival mechanism might have played a role if Mars once had life on the surface."
Mars could be spotted with many more patches of carbonates than originally suspected. Carbonates are minerals that form readily in large bodies of water and can point to a planet's wet history. Although only a few small outcrops of carbonates have been detected on Mars, scientists believe many more examples are blocked from view by the rust. The findings appear in the Friday July 1, online edition of the International Journal of Astrobiology.
"The plausibility of life on Mars depends on whether liquid water dotted its landscape for thousands or millions of years," said Janice Bishop, a planetary scientist at NASA's Ames Research Center at the SETI Institute at Moffett Field, Calif., and the paper's lead author. "It's possible that an important clue, the presence of carbonates, has largely escaped the notice of investigators trying to learn if liquid water once pooled on the Red Planet."
Scientists conduct field experiments in desert regions because the extremely dry conditions are similar to Mars. Researchers realized the importance of the varnish earlier this year when Bishop and Chris McKay, a planetary scientist at Ames investigated carbonate rocks coated with iron oxides collected in a location called Little Red Hill in the Mojave Desert.
"When we examined the carbonate rocks in the lab, it became evident that an iron oxide skin may be hindering the search for clues to the Red Planet's hydrological history," McKay said. "We found that the varnish both altered and partially masked the spectral signature of the carbonates."
McKay also found dehydration-resistant blue-green algae under the rock varnish. Scientists believe the varnish may have extended temporarily the time that Mars was habitable, as the planet's surface slowly dried up.
"The organisms in the Mojave Desert are protected from deadly ultraviolet light by the iron oxide coating," McKay said. "This survival mechanism might have played a role if Mars once had life on the surface."
No comments:
Post a Comment