When scientists discovered two great swaths of radiation encircling Earth in the 1950s, it spawned over-the-top fears about "killer electrons" and space radiation effects on Earthlings. The fears were soon quieted: the radiation doesn't reach Earth, though it can affect satellites and humans moving through the belts. Nevertheless, many mysteries about the belts – now known as the Van Allen Radiation belts remain to this day.
Filled with electrons and energetic charged particles, the radiation belts swell and shrink in response to incoming solar energy, but no one is quite sure how. Indeed, what appears to be the same type of incoming energy has been known to cause entirely different responses on different occasions, causing increased particles in one case and particle loss in another. Theories on just what causes the belts to swell or shrink abound, with little hard evidence to distinguish between them. One big question has simply been to determine if, when the belts shrink, particles escape up and out into interplanetary space or down toward Earth. Now, a new study using multiple spacecraft simultaneously has tracked the particles and determined the escape direction for at least one event: up.
"For a long time, it was thought particles would precipitate downward out of the belts," says Drew Turner, a scientist at the University of California, Los Angeles, and first author on a paper on these results appearing onine in Nature Physics on January 29, 2012 date. "But more recently, researchers theorized that maybe particles could sweep outward. Our results for this event are clear: we saw no increase in downward precipitation."
While it may sound like a simple detail, such knowledge is not just esoteric. Indeed, the study of particle losses in the belts has so far provided more mystery and potential theories than concrete information. But understanding the radiation belts – and how they change as particles and energy come in or go out is a crucial part of protecting satellites that fly through the region.
Also visit : graphic design dubai
Filled with electrons and energetic charged particles, the radiation belts swell and shrink in response to incoming solar energy, but no one is quite sure how. Indeed, what appears to be the same type of incoming energy has been known to cause entirely different responses on different occasions, causing increased particles in one case and particle loss in another. Theories on just what causes the belts to swell or shrink abound, with little hard evidence to distinguish between them. One big question has simply been to determine if, when the belts shrink, particles escape up and out into interplanetary space or down toward Earth. Now, a new study using multiple spacecraft simultaneously has tracked the particles and determined the escape direction for at least one event: up.
"For a long time, it was thought particles would precipitate downward out of the belts," says Drew Turner, a scientist at the University of California, Los Angeles, and first author on a paper on these results appearing onine in Nature Physics on January 29, 2012 date. "But more recently, researchers theorized that maybe particles could sweep outward. Our results for this event are clear: we saw no increase in downward precipitation."
While it may sound like a simple detail, such knowledge is not just esoteric. Indeed, the study of particle losses in the belts has so far provided more mystery and potential theories than concrete information. But understanding the radiation belts – and how they change as particles and energy come in or go out is a crucial part of protecting satellites that fly through the region.
Also visit : graphic design dubai
No comments:
Post a Comment